For the problems below, approximate the acceleration of gravity as -10 m/s². (We're on Earth.) The point of this practice is not highly precise answers but rather building up your intuition and mental-math abilities. (And let's not bother putting a directional j aside each vector quantity.)

1. A ball was thrown upward at 40 m/s. (This is almost 90 mph, which is ridiculous. Some baseball players can throw a ball this fast, although not upward.) The data table below shows the velocity at one-second intervals.

time (s)	velocity (m/s)
0.0	40.00
1.0	30.00
2.0	20.00
3.0	10.00
4.0	0.00
5.0	-10.00
6.0	-20.00
7.0	-30.00
8.0	-40.00

- a. At what time has the ball reached its peak? $t = 4 \text{ s} (v_f = at + v_i : 0 = -10t + 40)$
- b. At its peak, what is the ball's acceleration?a = -10 m/s/s
- c. What is the ball's displacement in that first second? $\Delta x = v_{avg}t = \frac{1}{2}(40+30)1 = 35 \text{ m}$
- d. What is the ball's total displacement, over the 8.0 seconds?

$$\Delta x = v_{avg}t = \frac{1}{2}(40 + -40)8 = 0 \text{ m}$$

e. What total distance (not displacement) does the ball travel, over the 8.0 seconds?

```
distance up = |\frac{1}{4}(40+0)4| = |80 \text{ m}| = 80 \text{ m}
distance down = |\frac{1}{4}(0+40)4| = |-80 \text{ m}| = 80 \text{ m}
total distance = 2(80 \text{ m}) = 160 \text{ m}
```

- 2. A ball was thrown upward at 60 m/s.
 - a. How many seconds does it take to reach its peak?

t = 6.9

b. How many seconds does it take to return to its starting height?

t = 12 s

c. What is the acceleration of the ball at 4.0 seconds?

```
a = -10 \text{ m/s/s}
```

d. What is the velocity of the ball at 8.0 seconds?

```
v = -20 \text{ m/s} (v_f = at + v_i : v_f = -10(8) + 60)
```

e. How high does the ball travel? (This is another way of asking for its displacement, when it's at its peak.)

```
\Delta x = v_{avg}t = \frac{1}{2}(60+0)6 = 180 \text{ m}
```

f. What is the displacement of the ball between t = 1.0 and t = 3.0 seconds?

 $\Delta x = v_{avg}t = \frac{1}{2}(50+30)2 = 80 \text{ m}$ (the "t" in the model represents a time interval, not a particular time; if the initial time is t = 0, then there is no meaningful difference between the two concepts; in this problem, there is a meaningful difference)

- 3. A ball was thrown downward at 20 m/s, over a deep hole.
 - a. What is the velocity of the ball at 3.0 seconds?

$$v = -50 \text{ m/s}$$

b. What is the acceleration of the ball at 3.0 seconds?

$$a = -10 \text{ m/s/s}$$

c. What is the displacement of the ball at 3.0 seconds?

$$\Delta x = v_{avg}t = \frac{1}{2}(-20+-50)3 = -105 \text{ m}$$

- 4. A ball was thrown upward at 25 m/s.
 - a. How many seconds does it take to reach its peak?

$$t = 2.5 s$$
 ($v_f = at + v_i : 0 = -10t + 25$)

b. At its peak, what is the ball's acceleration?

$$a = -10 \text{ m/s/s}$$

c. At its peak, what is the ball's velocity?

$$v = 0 \text{ m/s}$$

d. What is its velocity upon returning to its original height?

$$v = -25$$
 m/s (due to symmetry, but also $v_f = -10(5) + 25$)

e. How high does the ball travel?

$$\Delta x = v_{avg}t = \frac{1}{2}(25+0)2.5 = 31.25 \text{ m}$$

f. What is the ball's displacement at 4.0 seconds?

$$\Delta x = v_{avg}t = \frac{1}{2}(25 + -15)4 = 20 \text{ m}$$